
International Journal of Theoretical Physics, Vol. 39, No. 8, 2000

Raising and Lowering Operators for a Two-
Dimensional Hydrogen Atom by an Ansatz
Method

Jing-Ling Chen,1 Hong-Biao Zhang,2 Xue-Hong Wang,3

Hui Jing,2 and Xian-Geng Zhao1

Received March 18, 2000

Raising and lowering operators of a two-dimensional hydrogen atom are derived
by an Ansatz method.

1. INTRODUCTION AND GENERAL DEFINITION OF RAISING
AND LOWERING OPERATORS

Raising and lowering operators are important in quantum mechanics
[1–6]. For a physical system described by an observable H, the eigenproblem
H.E & 5 E.E & can be solved exactly via its raising and lowering operators
without dealing with the Schrödinger equation. In quantum mechanics, the
factorization of H into raising and lowering operators for the discrete spectrum
is a property of Hilbert space and is not restricted to any particular representa-
tion [7]. If H has a discrete spectrum, then it can be written as

H 5 o
n

En.cn&^cn. (1)

where the .cn& are the complete and orthonormal basis states of H. Thus one-
way factorization
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+̂++̂2 5 H 2 E0

is provided by operators which have the following spectral decompositions:

+̂+ 5 o
n

(En11 2 E0)1/2.cn11&^cn.

+̂2 5 o
n

(En11 2 E0)1/2.cn&^cn11. (2)

These mutually adjoint operators perform the raising and lowering operations

+̂+.cn& 5 (En11 2 E0)1/2.cn11&

+̂2.cn& 5 (En 2 E0)1/2.cn21& (3)

From (1) and (2), one has

[H, +̂6] 5 +̂6F 6 (4)

where

F6 5 o
n

(En61 2 En).cn&^cn. (5)

is an adjacent energy interval operator, since F6.cn& 5 (En61 2 En).cn&.
[Here we have place F6 to the right of +̂6 in (4) to allow it to operate
directly on the eigenfunction .cn&; this will simplify the calculations]. In
particular, when F6 5 6"v, (4) corresponds to the usual one in a harmonic
oscillator. When F6 is a function of H, i.e., F6 5 f 6(H ), (4) becomes

[H, +̂6] 5 +̂6f 6(H ) (6)

which is the case shown in ref. 1. Equation (4) or (6) is the general definition
of raising and lowering operators expressed by a commutation relation. Note
that the explicit forms of the raising and lowering operators +̂6 for a specific
Hamiltonian system need not be mutually adjoint [1].

The energy levels and wave functions of a two-dimensional (2D) hydro-
gen atom are well known. Raising and lowering operators for a two-dimen-
sional hydrogen atom (especially for the radial part of the wave function)
have been discussed by a factorization method [1, 8, 9]. The purpose of this
paper is to derive them by an Ansatz method based on the general definition
of raising and lowering operators [see equation (4)]. The plan of the paper
is as follows. Since a 2D hydrogen atom can be connected to a 2D harmonic
oscillator by the Kustaanheimo–Stiefel (KS) transformation [10–19] and the
raising and lowering operators of a harmonic oscillator are already well
known, in Section 2 we briefly review the physical background that we need.
In Section 3, we establish the raising and lowering operators for a 2D hydrogen
atom by an Ansatz method, and make some comments.
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2. KS TRANSFORMATION AND DILATATION OPERATOR

We start with the time-independent Schrödinger equation for a 2D hydro-
gen atom,

Hc 5 Ec, H 5
p2

2m
2

k
r

(7)

where m is the reduced mass of the hydrogen atom, k 5 e2, p2 5
2"2 (2

i51 (2/x2
i ), the xi being the Cartesian coordinates, and r 5 (x2

1 1
x2

2)1/2. We now transform the problem into a 2D harmonic oscillator via the
KS transformation. With the variables u1 and u2 this transformation can
be written

x1 5 u2
1 2 u2

2, x2 5 2u1u2 (8)

Under the transformation we have r 5 u2 5 u2
1 1 u2

2, and xi and ui are usually
realized by

x1 5 r cos f, x2 5 r sin f (9)

and

u1 5 !r cos
f
2

, u2 5 !r sin
f
2

(10)

The Schrödinger equation (7) becomes

F2
1

8m
1
u2 o

2

i51

2

u2
i

2
k
rGc 5 Ec (11)

After multiplying by r and taking r 5 u2 into account, we find

F2
1

8m o
2

i51

2

u2
i

2 Eu2Gc 5 kc (12)

This may be cast into the form of a Schrödinger equation for a 2D harmonic
oscillator after first stipulating that E , 0 (for bound motions), and making
the definitions

m 5 4m, v 5 (2E/2m)1/2, e 5 k (13)

We obtain

12
1

2m o
2

i51

2

u2
i

1
1
2

mv2u22c 5 ec (14)

or *0c 5 ec, with
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*0 5 2
1

2m o
2

i51

2

u2
i

1
1
2

mv2u2 (15)

*0 and e are the pseudo-Hamiltonian of a 2D harmonic oscillator and the
pseudo-energy eigenvalue, respectively. In the usual way, we now introduce
a set of two lowering and raising operators for the 2D harmonic oscillator,

bj 5 !mv
2"

uj 1 ! "

2mv


uj
, (16)

b†
j 5 !mv

2"
uj 2 ! "

2mv


uj
( j 5 1, 2)

where [bi , b†
j ] 5 dij, all other commutators being zero, and

[*0, bj] 5 2"vbj , [*0, b†
j ] 5 "vb†

j (17)

Thus (15) becomes

*0 5 "v1o
2

j51
b†

j bj 1 12 (18)

Now writing .c& in the occupation number representation as .cn& 5 .n1n2&
5 .n1&.n2&, which can be obtained by (b†

1)n1(b†
j )n2.0&, we immediately obtain

from (14)

e 5 k 5 (n1 1 n2 1 1)"v (n1, n2 5 0, 1, 2, . . .) (19)

Recalling v 5 (2E/2m)1/2, we obtain the energy levels of a 2D hydrogen atom

E [ En 5 2
k
2a

1
(n 2 1–2 )2 (n 5 1, 2, . . .) (20)

where a 5 "2/mk is the Bohr radius.
The wave function .cn& 5 .n1n2& can be expressed easily in polar coordi-

nates as cnl(u) 5 ^u.n1n2& 5 Rnl(u)Fl(f), where F(f) 5 eilf (l 5 0, 61 6
2, . . .), and Rnl(u) is related to the confluent hypergeometric function. Essen-
tially, cnl(u) is also the wave function of a 2D hydrogen atom under the KS
transformation shown in (8). From the point of view of a 2D harmonic
oscillator, the b†

j and bj are raising and lowering operators [see (17)], and
they transform .cn& into .cn11& and .cn21&, respectively. Now a question arises
naturally: With the known raising and lowering operators of a 2D harmonic
oscillator, can one obtain some hints to establish those of a 2D hydrogen
atom? The answer is yes. Let us focus on (16), and note that there is an
operator v 5 (2E/2m)1/2 in the b†

j and bj . After acting on .cn&, v becomes
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vn 5 ! k
4am

1

n 2
1
2

In this sense, the b†
j and bj are n-dependent operators as follows:

bj(n) 5 !mvn

2"
uj 1 ! "

2mvn



uj
,

(21)

b†
j(n) 5 !mvn

2"
uj 2 ! "

2mvn



uj
( j 5 1, 2)

so when referring to b†
j(n) and bj(n), they always act on .cn&. Combining (21)

with (10), one notes that b†
j(n11) (which will act on .cn11&) can be obtained

from b†
j(n) through replacing vn by vn11, or equivalently, through replacing r

by rr with r 5 (n 2 1/2)/(n 1 1/2). Hence, the raising operators of a 2D
hydrogen atom must contain a kind of operator which can transform r into
rr; as we know from the literature [1], this kind of operator is just the
dilatation operator as follows (for 2D):

D6
n 5 expF1 i

"
r ? p 1 12 ln r6G, r6 5

n 2 1/2
n 6 1 2 1/2

D6
n f (xj) 5 f (r6xj), D6

n f ( pj) 5 f ( pj /r6) ( j 5 1, 2) (22)

Note that (D1
n )† 5 D2

n , and D2
n is not defined for n 5 1. In the next section,

we derive raising and lowering operators of a 2D hydrogen atom by an
Ansatz method using the dilatation operator.

3. DERIVATION USING AN ANSATZ METHOD

We now write (7) in polar coordinates as

F2
"2

2m 1 2

r 2 1
1
r



r2 1
1

2m

L2
3

r 2 2
k
rGR(r)F(f) 5 ER(r)F(f) (23)

where the angular part of the wave function F(f) is the eigenfunction of the
angular momentum along the third direction L3 5 2i"/f. Since [L3, r̂6]
5 6"r̂6, where r̂6 5 (x1 6 ix2)/r, from (4) we know that r̂6 are raising and
lowering operators of L3 and they shift Fl(f) 5 eilf to Fl61(f), respectively.
Hence the raising and lowering operators for the angular part of the wave
function of a 2D hydrogen atom are clear. In the following we establish those
of the radial part of the wave functions based on the definition (4).
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Denote by Q1
n the raising operator of a 2D hydrogen atom; it should

commute with L3, otherwise it will change the angular part of the wave
function when it acts on c(r, f) 5 R(r)F(f). Guided by the observation

[L3, D6
n ] 5 [L3, r] 5 [L3, r ? p] 5 0 (24)

we make the Ansatz

Q1
n 5 T 1

n D1
n , T 1

n 5
i
"

r ? p 2 an
r
a

1 bn (25)

where an and bn are some unknown n-dependent coefficients that need to
be determined later.

Due to

[p2, r] 5 2
2"2

r 1 i
"

r ? p 1
1
22, r ? p 2 p ? r 5 2i"

Fr ? p,
1
rG 5 i"

1
r

, [p2, r ? p] 5 22i"p2 (26)

D6
n

r
n 2 1/2

5
r

n 6 1 2 1/2
D6

n , D6
n (n 2 1/2)2p2 5 (n 6 1 2 1/2)2p2D6

n

we obtain

HT 1
n 5 T 1

n H 1 2H 1
k
r

1 an
k
r 1 i

"
r ? p 1

1
22

HD1
n 5 D1

n
(n 2 1/2)2

(n 1 1/2)2 FH 1 11 2
n 1 1/2
n 2 1/22 k

rG (27)

thus

[H, T1
n D1

n ] 5 T 1
n D1

n F(n 2 1/2)2

(n 1 1/2)2 2 1GH

1 D1
n

n 2 1/2
n 1 1/2 1an 2

1
n 1 1/22 k

r
i
"

r ? p

1 D1
n

n 2 1/2
n 1 1/2 F1 1

an

2
2

bn 1 1
n 1 1/2G k

r

1 2D1
n

(n 2 1/2)2

(n 1 1/2)2 FH 1
k
2a

1
(n 2 1/2)2 (n 1 1/2)anG (28)

When (28) acts on .cn&, we set
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an 2
1

n 1 1/2
5 0, 1 1

an

2
2

bn 1 1
n 1 1/2

5 0

(29)

FH 1
k
2a

1
(n 2 1/2)2 (n 1 1/2)anG.cn& 5 0

i.e., an 5 1/(n 1 1/2), bn 5 n, En 5 2(k/2a)/(n 2 1/2)2; therefore, (28)
becomes

[H, Q1
n ] 5 Q 1

n F +, FF + 5 1(n 2 1/2)2

(n 1 1/2)2 2 12HG.cn& 5 (En11 2 En).cn&

(30)

Based on the definition (4), Q1
n is the sought raising operator. By the same

Ansatz method, the lowering operators can also be determined. They are

Q2
1 5 T 2

1 5 2
i
"

r ? p 2
2r
a

, Q2
n 5 T 2

n D2
n (n $ 2)

T 2
n 5 2

i
"

r ? p 2
r
a

1
(n 2 1) 2 1/2

1 n 2 1 (31)

From r ? p 5 2i"r /r, T 2
1 R10(r) 5 0, Q2

n Rn,n21(r) 5 0, Q1
n Rn,l(r) 5

Rn11,l(r), and Q2
n Rn,l(r) 5 Rn21,l(r), we can obtain all the radial parts of the

wave functions Rn,l(r).
In conclusion, based on hints from the raising and lowering operators

of a 2D harmonic oscillator, we have established Q6
n for a 2D hydrogen atom

by an Ansatz method. The n-dependent operators Q6
n can be expressed in a

unified formula as (for n $ 2):

Q6
n 5 T 6

n D6
n 5 61 i

"
r ? p 1

1
22D6

n 2
r
a

D6
n

1
(n 6 1) 2 1/2

1 D6
n 1n 2

1
22
(32)

If we introduce the operator

1̂ 5 !2
k
2a

1
H

(33)

then

1̂.cn& 5 !2
k
2a

1
En

.cn& (34)

which can be written in terms of n as 1̂.cn& 5 (n 2 1/2).cn&. The dilatation
operator can be expressed as
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D6
n 5 o

`

k50

1
k! 1 i

"
r ? p 1 12

n

1ln
n 2 1/2

(n 2 1/2) 6 12
k

(35)

When D6
n acts on .cn&, its effect is the same as that of

D6 5 o
`

k50

1
k! 1 i

"
r ? p 1 12

k

1ln
1̂

1̂ 6 12
k

(36)

Based on the above analysis, from (32) the n-independent raising and lowering
operators Q6 are given by

Q6 5 61 i
"

r ? p 1
1
22D6 2

r
a

D6 1

1̂ 6 1
1 D61̂ (37)
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