Raising and Lowering Operators for a Two-Dimensional Hydrogen Atom by an Ansatz Method

Jing-Ling Chen,¹ Hong-Biao Zhang,² Xue-Hong Wang,³ Hui Jing,² and Xian-Geng Zhao¹

Received March 18, 2000

Raising and lowering operators of a two-dimensional hydrogen atom are derived by an Ansatz method.

1. INTRODUCTION AND GENERAL DEFINITION OF RAISING AND LOWERING OPERATORS

Raising and lowering operators are important in quantum mechanics [1–6]. For a physical system described by an observable *H*, the eigenproblem $H|E\rangle = E|E\rangle$ can be solved exactly via its raising and lowering operators without dealing with the *Schrödinger equation*. In quantum mechanics, the factorization of *H* into raising and lowering operators for the discrete spectrum is a property of Hilbert space and is not restricted to any particular representation [7]. If *H* has a discrete spectrum, then it can be written as

$$H = \sum_{n} E_{n} |\psi_{n}\rangle \langle \psi_{n}| \tag{1}$$

where the $|\psi_n\rangle$ are the complete and orthonormal basis states of *H*. Thus one-way factorization

0020-7748/00/0800-2043\$18.00/0 © 2000 Plenum Publishing Corporation

¹Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009 (26), Beijing 100088, China; e-mail: jinglingchen@eyou.com

²Theoretical Physics Division, Nankai Institute of Mathematics, Nankai University, Tianjin 300071, China.

³Department of Mathematics, Hebei Normal University, Shijiazhuang 050016, China.

²⁰⁴³

$$\hat{\mathcal{L}}^{+}\hat{\mathcal{L}}^{-}=H-E_{0}$$

is provided by operators which have the following spectral decompositions:

$$\hat{\mathscr{L}}^{+} = \sum_{n} (E_{n+1} - E_0)^{1/2} |\psi_{n+1}\rangle \langle \psi_n|$$
$$\hat{\mathscr{L}}^{-} = \sum_{n} (E_{n+1} - E_0)^{1/2} |\psi_n\rangle \langle \psi_{n+1}|$$
(2)

These mutually adjoint operators perform the raising and lowering operations

$$\hat{\mathscr{L}}^{+} |\psi_{n}\rangle = (E_{n+1} - E_{0})^{1/2} |\psi_{n+1}\rangle$$
$$\hat{\mathscr{L}}^{-} |\psi_{n}\rangle = (E_{n} - E_{0})^{1/2} |\psi_{n-1}\rangle$$
(3)

From (1) and (2), one has

$$[H, \hat{\mathcal{L}}^{\pm}] = \hat{\mathcal{L}}^{\pm} F^{\pm} \tag{4}$$

where

$$F^{\pm} = \sum_{n} \left(E_{n\pm 1} - E_{n} \right) \left| \psi_{n} \right\rangle \left\langle \psi_{n} \right|$$
(5)

is an adjacent energy interval operator, since $F^{\pm}|\psi_n\rangle = (E_{n\pm 1} - E_n)|\psi_n\rangle$. [Here we have place F^{\pm} to the right of $\hat{\mathcal{L}}^{\pm}$ in (4) to allow it to operate directly on the eigenfunction $|\psi_n\rangle$; this will simplify the calculations]. In particular, when $F^{\pm} = \pm \hbar \omega$, (4) corresponds to the usual one in a harmonic oscillator. When F^{\pm} is a function of H, i.e., $F^{\pm} = f^{\pm}(H)$, (4) becomes

$$[H, \hat{\mathcal{X}}^{\pm}] = \hat{\mathcal{X}}^{\pm} f^{\pm}(H) \tag{6}$$

which is the case shown in ref. 1. Equation (4) or (6) is the general definition of raising and lowering operators expressed by a commutation relation. Note that the explicit forms of the raising and lowering operators $\hat{\mathscr{L}}^{\pm}$ for a specific Hamiltonian system need not be mutually adjoint [1].

The energy levels and wave functions of a two-dimensional (2D) hydrogen atom are well known. Raising and lowering operators for a two-dimensional hydrogen atom (especially for the radial part of the wave function) have been discussed by a factorization method [1, 8, 9]. The purpose of this paper is to derive them by an Ansatz method based on the general definition of raising and lowering operators [see equation (4)]. The plan of the paper is as follows. Since a 2D hydrogen atom can be connected to a 2D harmonic oscillator by the Kustaanheimo–Stiefel (KS) transformation [10–19] and the raising and lowering operators of a harmonic oscillator are already well known, in Section 2 we briefly review the physical background that we need. In Section 3, we establish the raising and lowering operators for a 2D hydrogen atom by an Ansatz method, and make some comments.

2. KS TRANSFORMATION AND DILATATION OPERATOR

We start with the time-independent Schrödinger equation for a 2D hydrogen atom,

$$H\psi = E\psi, \qquad H = \frac{\mathbf{p}^2}{2\mu} - \frac{\kappa}{r}$$
 (7)

where μ is the reduced mass of the hydrogen atom, $\kappa = e^2$, $\mathbf{p}^2 = -\hbar^2 \sum_{i=1}^2 (\partial^2 / \partial x_i^2)$, the x_i being the Cartesian coordinates, and $r = (x_1^2 + x_2^2)^{1/2}$. We now transform the problem into a 2D harmonic oscillator via the KS transformation. With the variables u_1 and u_2 this transformation can be written

$$x_1 = u_1^2 - u_2^2, \qquad x_2 = 2u_1 u_2 \tag{8}$$

Under the transformation we have $r = u^2 = u_1^2 + u_2^2$, and x_i and u_i are usually realized by

$$x_1 = r \cos \phi, \qquad x_2 = r \sin \phi$$
 (9)

and

$$u_1 = \sqrt{r} \cos \frac{\Phi}{2}, \qquad u_2 = \sqrt{r} \sin \frac{\Phi}{2}$$
 (10)

The Schrödinger equation (7) becomes

$$\left[-\frac{1}{8\mu}\frac{1}{u^2}\sum_{i=1}^2\frac{\partial^2}{\partial u_i^2}-\frac{\kappa}{r}\right]\psi = E\psi$$
(11)

After multiplying by r and taking $r = u^2$ into account, we find

$$\left[-\frac{1}{8\mu}\sum_{i=1}^{2}\frac{\partial^{2}}{\partial u_{i}^{2}}-Eu^{2}\right]\psi=\kappa\psi$$
(12)

This may be cast into the form of a Schrödinger equation for a 2D harmonic oscillator after first stipulating that E < 0 (for bound motions), and making the definitions

$$m = 4\mu, \qquad \omega = (-E/2\mu)^{1/2}, \qquad \epsilon = \kappa$$
 (13)

We obtain

$$\left(-\frac{1}{2m}\sum_{i=1}^{2}\frac{\partial^{2}}{\partial u_{i}^{2}}+\frac{1}{2}m\omega^{2}u^{2}\right)\psi=\epsilon\psi$$
(14)

or $\mathcal{H}_0 \psi = \epsilon \psi$, with

Chen, Zhang, Wang, Jing, and Zhao

$$\mathscr{H}_{0} = -\frac{1}{2m} \sum_{i=1}^{2} \frac{\partial^{2}}{\partial u_{i}^{2}} + \frac{1}{2} m \omega^{2} u^{2}$$
(15)

 \mathcal{H}_0 and $\boldsymbol{\epsilon}$ are the pseudo-Hamiltonian of a 2D harmonic oscillator and the pseudo-energy eigenvalue, respectively. In the usual way, we now introduce a set of two lowering and raising operators for the 2D harmonic oscillator,

$$b_j = \sqrt{\frac{m\omega}{2\hbar}} u_j + \sqrt{\frac{\hbar}{2m\omega}} \frac{\partial}{\partial u_j}, \qquad (16)$$

$$b_j^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} u_j - \sqrt{\frac{\hbar}{2m\omega}} \frac{\partial}{\partial u_j} \qquad (j = 1, 2)$$

where $[b_i, b_i^{\dagger}] = \delta_{ii}$, all other commutators being zero, and

$$[\mathcal{H}_0, b_j] = -\hbar\omega b_j, \qquad [\mathcal{H}_0, b_j^{\dagger}] = \hbar\omega b_j^{\dagger}$$
(17)

Thus (15) becomes

$$\mathcal{H}_0 = \hbar \omega \left(\sum_{j=1}^2 b_j^{\dagger} b_j + 1 \right)$$
(18)

Now writing $|\psi\rangle$ in the occupation number representation as $|\psi_n\rangle = |n_1n_2\rangle = |n_1\rangle|n_2\rangle$, which can be obtained by $(b_1^{\dagger})^{n_1}(b_j^{\dagger})^{n_2}|0\rangle$, we immediately obtain from (14)

$$\epsilon = \kappa = (n_1 + n_2 + 1)\hbar\omega$$
 $(n_1, n_2 = 0, 1, 2, ...)$ (19)

Recalling $\omega = (-E/2\mu)^{1/2}$, we obtain the energy levels of a 2D hydrogen atom

$$E \equiv E_n = -\frac{\kappa}{2a} \frac{1}{(n-\frac{1}{2})^2} \qquad (n = 1, 2, \ldots)$$
(20)

where $a = \hbar^2 / \mu \kappa$ is the Bohr radius.

The wave function $|\psi_n\rangle = |n_1 n_2\rangle$ can be expressed easily in polar coordinates as $\psi_{nl}(\mathbf{u}) = \langle \mathbf{u} | n_1 n_2 \rangle = R_{nl}(u) \Phi_l(\phi)$, where $\Phi(\phi) = e^{il\phi}$ $(l = 0, \pm 1 \pm 2, ...)$, and $R_{nl}(u)$ is related to the confluent hypergeometric function. Essentially, $\psi_{nl}(\mathbf{u})$ is also the wave function of a 2D hydrogen atom under the KS transformation shown in (8). From the point of view of a 2D harmonic oscillator, the b_j^{\dagger} and b_j are raising and lowering operators [see (17)], and they transform $|\psi_n\rangle$ into $|\psi_{n+1}\rangle$ and $|\psi_{n-1}\rangle$, respectively. Now a question arises naturally: With the known raising and lowering operators of a 2D harmonic oscillator, can one obtain some hints to establish those of a 2D hydrogen atom? The answer is yes. Let us focus on (16), and note that there is an operator $\omega = (-E/2\mu)^{1/2}$ in the b_j^{\dagger} and b_j . After acting on $|\psi_n\rangle$, ω becomes

Raising and Lowering Operators for 2D H Atom

$$\omega_n = \sqrt{\frac{\kappa}{4a\mu}} \frac{1}{n - \frac{1}{2}}$$

In this sense, the b_i^{\dagger} and b_i are *n*-dependent operators as follows:

$$b_{j(n)} = \sqrt{\frac{m\omega_n}{2\hbar}} u_j + \sqrt{\frac{\hbar}{2m\omega_n}} \frac{\partial}{\partial u_j},$$

$$b_{j(n)}^{\dagger} = \sqrt{\frac{m\omega_n}{2\hbar}} u_j - \sqrt{\frac{\hbar}{2m\omega_n}} \frac{\partial}{\partial u_j} \qquad (j = 1, 2)$$
(21)

so when referring to $b_{j(n)}^{\dagger}$ and $b_{j(n)}$, they always act on $|\psi_n\rangle$. Combining (21) with (10), one notes that $b_{j(n+1)}^{\dagger}$ (which will act on $|\psi_{n+1}\rangle$) can be obtained from $b_{j(n)}^{\dagger}$ through replacing ω_n by ω_{n+1} , or equivalently, through replacing r by ρr with $\rho = (n - 1/2)/(n + 1/2)$. Hence, the raising operators of a 2D hydrogen atom must contain a kind of operator which can transform r into ρr ; as we know from the literature [1], this kind of operator is just the dilatation operator as follows (for 2D):

$$D_{n}^{\pm} = \exp\left[\left(\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} + 1\right) \ln \rho^{\pm}\right], \quad \rho^{\pm} = \frac{n - 1/2}{n \pm 1 - 1/2}$$
$$D_{n}^{\pm} f(x_{j}) = f(\rho^{\pm} x_{j}), \quad D_{n}^{\pm} f(p_{j}) = f(p_{j}/\rho^{\pm}) \quad (j = 1, 2) \quad (22)$$

Note that $(D_n^+)^{\dagger} = D_n^-$, and D_n^- is not defined for n = 1. In the next section, we derive raising and lowering operators of a 2D hydrogen atom by an Ansatz method using the dilatation operator.

3. DERIVATION USING AN ANSATZ METHOD

We now write (7) in polar coordinates as

$$\left[-\frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right) + \frac{1}{2\mu}\frac{L_3^2}{r^2} - \frac{\kappa}{r}\right]R(r)\Phi(\phi) = ER(r)\Phi(\phi) \quad (23)$$

where the angular part of the wave function $\Phi(\phi)$ is the eigenfunction of the angular momentum along the third direction $L_3 = -i\hbar\partial/\partial\phi$. Since $[L_3, \hat{\mathbf{r}}^{\pm}] = \pm\hbar\hat{\mathbf{r}}^{\pm}$, where $\hat{\mathbf{r}}^{\pm} = (x_1 \pm ix_2)/r$, from (4) we know that $\hat{\mathbf{r}}^{\pm}$ are raising and lowering operators of L_3 and they shift $\Phi_l(\phi) = e^{il\phi}$ to $\Phi_{l\pm 1}(\phi)$, respectively. Hence the raising and lowering operators for the angular part of the wave function of a 2D hydrogen atom are clear. In the following we establish those of the radial part of the wave functions based on the definition (4).

Denote by Q_n^+ the raising operator of a 2D hydrogen atom; it should commute with L_3 , otherwise it will change the angular part of the wave function when it acts on $\psi(r, \phi) = R(r)\Phi(\phi)$. Guided by the observation

$$[L_3, D_n^{\pm}] = [L_3, r] = [L_3, \mathbf{r} \cdot \mathbf{p}] = 0$$
(24)

we make the Ansatz

$$Q_n^+ = T_n^+ D_n^+, \qquad T_n^+ = \frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} - \alpha_n \frac{r}{a} + \beta_n$$
 (25)

where α_n and β_n are some unknown *n*-dependent coefficients that need to be determined later.

Due to

$$[\mathbf{p}^{2}, r] = -\frac{2\hbar^{2}}{r} \left(\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} + \frac{1}{2} \right), \qquad \mathbf{r} \cdot \mathbf{p} - \mathbf{p} \cdot \mathbf{r} = 2i\hbar$$

$$\begin{bmatrix} \mathbf{r} \cdot \mathbf{p}, \frac{1}{r} \end{bmatrix} = i\hbar \frac{1}{r}, \qquad [p^{2}, \mathbf{r} \cdot \mathbf{p}] = -2i\hbar p^{2} \qquad (26)$$

$$D_{n}^{\pm} \frac{r}{n-1/2} = \frac{r}{n \pm 1 - 1/2} D_{n}^{\pm}, \qquad D_{n}^{\pm}(n-1/2)^{2}p^{2} = (n \pm 1 - 1/2)^{2}p^{2}D_{n}^{\pm}$$

we obtain

$$HT_{n}^{+} = T_{n}^{+}H + 2H + \frac{\kappa}{r} + \alpha_{n}\frac{\kappa}{r}\left(\frac{i}{\hbar}\mathbf{r}\cdot\mathbf{p} + \frac{1}{2}\right)$$
$$HD_{n}^{+} = D_{n}^{+}\frac{(n-1/2)^{2}}{(n+1/2)^{2}}\left[H + \left(1 - \frac{n+1/2}{n-1/2}\right)\frac{\kappa}{r}\right]$$
(27)

thus

$$[H, T_n^+ D_n^+] = T_n^+ D_n^+ \left[\frac{(n-1/2)^2}{(n+1/2)^2} - 1 \right] H$$

+ $D_n^+ \frac{n-1/2}{n+1/2} \left(\alpha_n - \frac{1}{n+1/2} \right) \frac{\kappa}{r} \frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p}$
+ $D_n^+ \frac{n-1/2}{n+1/2} \left[1 + \frac{\alpha_n}{2} - \frac{\beta_n + 1}{n+1/2} \right] \frac{\kappa}{r}$
+ $2D_n^+ \frac{(n-1/2)^2}{(n+1/2)^2} \left[H + \frac{\kappa}{2a} \frac{1}{(n-1/2)^2} (n+1/2)\alpha_n \right]$ (28)

When (28) acts on $|\psi_n\rangle$, we set

Raising and Lowering Operators for 2D H Atom

$$\alpha_n - \frac{1}{n+1/2} = 0, \qquad 1 + \frac{\alpha_n}{2} - \frac{\beta_n + 1}{n+1/2} = 0$$

$$\left[H + \frac{\kappa}{2a} \frac{1}{(n-1/2)^2} (n+1/2)\alpha_n \right] |\psi_n\rangle = 0$$
(29)

i.e., $\alpha_n = 1/(n + 1/2)$, $\beta_n = n$, $E_n = -(\kappa/2a)/(n - 1/2)^2$; therefore, (28) becomes

$$[H, Q_n^+] = Q_n^+ F^+, \qquad \left[F^+ = \left(\frac{(n - 1/2)^2}{(n + 1/2)^2} - 1 \right) H \right] |\psi_n\rangle = (E_{n+1} - E_n) |\psi_n\rangle$$
(30)

Based on the definition (4), Q_n^+ is the sought raising operator. By the same Ansatz method, the lowering operators can also be determined. They are

$$Q_{1}^{-} = T_{1}^{-} = -\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} - \frac{2r}{a}, \qquad Q_{n}^{-} = T_{n}^{-} D_{n}^{-} \qquad (n \ge 2)$$
$$T_{n}^{-} = -\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} - \frac{r}{a} \frac{1}{(n-1) - 1/2} + n - 1 \qquad (31)$$

From $\mathbf{r} \cdot \mathbf{p} = -i\hbar r \ \partial/\partial r$, $T_1^- R_{10}(r) = 0$, $Q_n^- R_{n,n-1}(r) = 0$, $Q_n^+ R_{n,l}(r) = R_{n+1,l}(r)$, and $Q_n^- R_{n,l}(r) = R_{n-1,l}(r)$, we can obtain all the radial parts of the wave functions $R_{n,l}(r)$.

In conclusion, based on hints from the raising and lowering operators of a 2D harmonic oscillator, we have established Q_n^{\pm} for a 2D hydrogen atom by an Ansatz method. The *n*-dependent operators Q_n^{\pm} can be expressed in a unified formula as (for $n \ge 2$):

$$Q_{n}^{\pm} = T_{n}^{\pm} D_{n}^{\pm} = \pm \left(\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} + \frac{1}{2}\right) D_{n}^{\pm} - \frac{r}{a} D_{n}^{\pm} \frac{1}{(n \pm 1) - 1/2} + D_{n}^{\pm} \left(n - \frac{1}{2}\right)$$
(32)

If we introduce the operator

$$\hat{\mathcal{N}} = \sqrt{-\frac{\kappa}{2a}\frac{1}{H}}$$
(33)

then

$$\hat{\mathcal{N}}|\psi_n\rangle = \sqrt{-\frac{\kappa}{2a}\frac{1}{E_n}}|\psi_n\rangle \tag{34}$$

which can be written in terms of *n* as $\hat{\mathcal{N}}|\psi_n\rangle = (n - 1/2)|\psi_n\rangle$. The dilatation operator can be expressed as

Chen, Zhang, Wang, Jing, and Zhao

$$D_n^{\pm} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} + 1 \right)^n \left(\ln \frac{n - 1/2}{(n - 1/2) \pm 1} \right)^k$$
(35)

When D_n^{\pm} acts on $|\psi_n\rangle$, its effect is the same as that of

$$D^{\pm} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} + 1 \right)^{k} \left(\ln \frac{\hat{\mathcal{N}}}{\hat{\mathcal{N}} \pm 1} \right)^{k}$$
(36)

Based on the above analysis, from (32) the *n*-independent raising and lowering operators Q^{\pm} are given by

$$Q^{\pm} = \pm \left(\frac{i}{\hbar} \mathbf{r} \cdot \mathbf{p} + \frac{1}{2}\right) D^{\pm} - \frac{r}{a} D^{\pm} \frac{1}{\hat{\mathcal{N}} \pm 1} + D^{\pm} \hat{\mathcal{N}}$$
(37)

ACKNOWLEDGMENTS

This work was partially supported by the National Natural Science Foundation of China.

REFERENCES

- 1. O. L. De Lange, and R. E. Raab, (1991), *Operator Methods in Quantum Mechanics* (Oxford: Clarendon), p. 126.
- 2. R. J. Glauber, (1963). Phys. Rev. Lett. 10, 277.
- 3. M. M. Nieto, and L. M. Simmons, Jr. (1978). Phys. Rev. Lett. 41, 207.
- 4. A. M. Perelemov, (1972). Commun. Math. Phys. 26, 222.
- 5. J. L. Chen, M. L. Ge, and K. Xue, (1999). Phys. Rev. E 60, 1486.
- 6. J. L. Chen, M. L. Ge, and K. Xue, (1999). J. Phys. A 32, 945.
- 7. L. de la Pena, and R. Mantemayor, (1980). Am. J. Phys. 48, 855.
- 8. Y. F. Liu, Y. A. Lei, and J. Y. Zeng, (1997). Phys. Lett. A 231, 9.
- 9. B. W. Xu, and F. M. Kong, (1999). Phys. Lett. A 259, 212.
- 10. P. Kustaanheimo, and E. Stiefel, (1965). J. Reine. Angew. Math. 218, 204.
- 11. M. Ikeda, and Y. Miyachi, (1970). Math. Jpn. 15, 127.
- 12. A. O. Barut, C. K. E. Schneider, and R. Wilson, (1979). J. Math. Phys. 20, 2244.
- 13. A. C. Chen, (1980). Phys. Rev. A 22, 333.
- 14. T. Iwai, (1982). J. Math. Phys. 23, 1093.
- 15. M. Kibler, and T. Négadi, (1983). J. Phys. A 16, 4265.
- 16. M. Kibler, and T. Négadi, (1984). Phys. Rev. A 29, 2891.
- 17. F. H. J. Cornish, (1984). J. Phys. A 17, 323.
- 18. C. C. Gerry, (1986). Phys. Rev. A 33, 6.
- 19. G. J. Zeng, S. L. Zhou, S. M. Ao, and F. S. Jiang, (1997). J. Phys. A 30, 1175.